Ever wondered what is a gas turbine? How does it work? Is it just a turbine? Here let us explore gas turbines, mysteries and myths behind it!
History of Gas Turbines:
A turbine is any kind of spinning device that uses the action of a fluid to produce work. Typical fluids are: air, wind, water, steam and helium. Windmills and hydroelectric dams have used turbine action for decades to turn the core of an electrical generator to produce power for both industrial and residential consumption. Simpler turbines are much older, with the first known appearance dating to the time of ancient Greece.
In the history of energy conversion, however, the gas turbine is relatively new. The first practical gas turbine used to generate electricity ran at Neuchatel, Switzerland in 1939, and was developed by the Brown Boveri Company. The first gas turbine powered airplane flight also took place in 1939 in Germany, using the gas turbine developed by Hans P. von Ohain. In England, the 1930s’ invention and development of the aircraft gas turbine by Frank Whittle resulted in a similar British flight in 1941.
The name "gas turbine" is somewhat misleading, because to many it implies a turbine engine that uses gas as its fuel. Actually a gas turbine (as shown schematically in Fig. 1) has a compressor to draw in and compress gas (most usually air); a combustor (or burner) to add fuel to heat the compressed air; and a turbine to extract power from the hot air flow. The gas turbine is an internal combustion (IC) engine employing a continuous combustion process. This differs from the intermittent combustion occurring in Diesel and automotive IC engines. Because the 1939 origin of the gas turbine lies simultaneously in the electric power field and in aviation, there have been a profusion of "other names" for the gas turbine. For electrical power generation and marine applications it is generally called a gas turbine, also a combustion turbine (CT), a turboshaft engine, and sometimes a gas turbine engine.
For aviation applications it is usually called a jet engine, and various other names depending on the particular engine configuration or application, such as: jet turbine engine; turbojet; turbofan; fanjet; and turboprop or prop jet (if it is used to drive a propeller). The compressor combustor- turbine part of the gas turbine (Fig. 1) is commonly termed the gas generator.
Gas Turbine
A gas turbine is an engine where fuel is continuously burnt with compressed air to produce a stream of hot, fast moving gas. This gas stream is used to power the compressor that supplies the air to the engine as well as providing excess energy that may be used to do other work. The engine consists of three main parts viz., compressor, combustor and turbine.
There are many different kinds of turbines:
Steam turbine: Most power plants use coal, natural as, oil or a nuclear reactor to create steam. The steam runs through a huge and very carefully designed multi-stage turbine to spin an output shaft that drives the plant's generator. Hydroelectric dams use water turbines in the same way to generate power. The turbines used in a hydroelectric plant look completely different from a steam turbine because water is so much denser (and slower moving) than steam, but it is the same principle.
Wind turbines: They are also known as wind mills and use the wind as their motive force. A wind turbine looks nothing like a steam turbine or a water turbine because wind is slow moving and very light, but again, the principle is the same. A gas turbine is an extension of the same concept. In a gas turbine, a pressurized gas spins the turbine. In all modern gas turbine engines, the engine produces its own pressurized gas, and it does this by burning something like propane, natural gas, kerosene or jet fuel. The heat that comes from burning the fuel expands air, and the high-speed rush of this hot air spins the turbine.
Gas turbine engines are, theoretically, extremely
simple. They have three parts:
Compressor - Compresses the incoming air to high pressure
Combustion area - Burns the fuel and produces
high-pressure, high -velocity gas
Turbine - Extracts the energy from the high-pressure, high -velocity gas flowing from the combustion chamber.
A greater understanding of the gas turbine and its operation can be gained by considering its three major components (Fig. 1, Fig. 2 and Fig. 3): the compressor, the combustor and the turbine. The features and characteristics will be touched on here only briefly.
Compressors and Turbines: The compressor components are connected to the turbine by a shaft in order to allow the turbine to turn the compressor. A single shaft gas turbine (Fig. 1a and 1b) has only one shaft connecting the compressor and turbine components. A twin spool gas turbine (Fig. 6b, and 6c) has two concentric shafts, a longer one connecting a low pressure compressor to a low pressure turbine (the low spool) which rotates inside a shorter, larger diameter shaft. The shorter, larger diameter shaft connects the high pressure turbine with the higher pressure compressor (the high spool) which rotates at higher speeds than the low spool. A triple spool engine would have a third, intermediate pressure compressor-turbine spool.
Gas turbine compressors are either centrifugal or axial, or can be a combination of both. Centrifugal compressors (with compressed air output around the outer perimeter of the machine) are robust, generally cost less and are limited to pressure ratios of 6 or 7 to 1. They are found in early gas turbines or in modern, smaller gas turbines. The more efficient, higher capacity axial flow compressors (with compressed air output directed along the center line of the machine) are used in most gas turbines (e.g. Fig. 2 and Fig. 3). An axial compressor is made up of a relatively large number of stages, each stage, consisting of a row of rotating blades (airfoils) and a row of stationary blades (stators), arranged so that the air is compressed as it passes through each stage.
Turbines are generally easier to design and operate than compressors, since the hot air flow is expanding rather than being compressed. Axial flow turbines (e.g. Fig. 2 and Fig. 3) will require fewer stages than an axial compressor. There are some smaller gas turbines that utilize centrifugal turbines (radial inflow), but most utilize axial turbines.
Turbine design and manufacture is complicated by the need to extend turbine component life in the hot air flow. The problem of ensuring durability is especially critical in the first turbine stage where temperatures are highest. Special materials and elaborate cooling schemes must be used to allow turbine airfoils that melt at 1800-1900°F to survive in air flows with temperatures as high as 3000°F.
Combustors: A successful combustor design must satisfy many requirements and has been a challenge from the earliest gas turbines of Whittle and von Ohain. The relative importance of each requirement varies with the application of the gas turbine, and of course, some requirements are conflicting, requiring design compromises to be made. Most design requirements reflect concerns over engine costs, efficiency, and the environment. The basic design requirements can be classified as follows:
1. High combustion efficiency at all operating conditions
2. Low levels of unburned hydrocarbons and carbon monoxide, low oxides of nitrogen at high power and no visible smoke. (Minimized pollutants and emissions.)
3. Low pressure drop. Three to four percent is common.
4. Combustion must be stable under all operating conditions.
5. Consistently reliable ignition must be attained at very low temperatures, and at high altitudes (for aircraft).
6. Smooth combustion, with no pulsations or rough burning.
7. A low temperature variation for good turbine life requirements.
8. Useful life (thousands of hours), particularly for industrial use.
9. Multi-fuel use. Characteristically natural gas and diesel fuel are used for industrial applications and kerosene for aircraft.
10. Length and diameter compatible with engine envelope (outside dimensions).
11. Designed for minimum cost, repair and maintenance.
12. Minimum weight (for aircraft applications).
A combustor consists of at least three basic parts: a casing, a flame tube and a fuel injection system. The casing must withstand the cycle pressures and may be a part of the structure of the gas turbine. It encloses a relatively thin-walled flame tube within which combustion takes place, and a fuel injection system.
Compared to other prime movers (such as Diesel and reciprocating automobile engines), gas turbines are considered to produce very low levels of combustion pollution. The gas turbine emissions of major concern are unburned hydrocarbons, carbon monoxide, oxides of nitrogen (NOx) and smoke. While the contribution of jet aircraft to atmospheric pollution is less than 1%, jet aircraft emissions injected directly into the upper troposphere have doubled between the latitudes of 40 to 60 degrees north, increasing ozone by about 20%. In the stratosphere, where supersonic aircraft fly, NOx will deplete ozone. Both effects are harmful, so further NOx reduction in gas turbine operation is a challenge for the 21st century.
The Turbine
At the left of the engine is the turbine section. In this figure, there are two sets of turbines. The first set directly drives the compressor. The turbines, the shaft and the compressor all turn as a single unit: At the far left is a final turbine stage, shown here with a single set of vanes. It drives the output shaft. This final turbine stage and the output shaft are a completely stand-alone, freewheeling unit. They spin freely without any connection to the rest of the engine. And that is the amazing part about a gas turbine engine -- there is enough energy in the hot gases blowing through the blades of that final output turbine to generate 1,500 horsepower and drive a 63-ton M-1 Tank! A gas turbine engine really is that simple. In the case of the turbine used in a tank or a power plant, there really is nothing to do with the exhaust gases but vent them through an exhaust pipe, as shown. Sometimes the exhaust will run through some sort of heat exchanger either to extract the heat for some other purpose or to preheat air before it enters the combustion chamber.
The discussion here is obviously simplified a bit. For example, we have not discussed the areas of bearings, oiling systems, internal support structures of the engine, stator vanes and so on. All of these areas become major engineering problems because of the tremendous temperatures, pressures and spin rates inside the engine. The following figure shows the general layout of an axial-flow gas turbine -- the sort of engine you would find driving the rotor of a helicopter, for example:
In this engine, air is sucked in from the right by the compressor. The compressor is basically a cone-shaped cylinder with small fan blades attached in rows (eight rows of blades are represented here). Assuming the light blue represents air at normal air pressure, then as the air is forced through the compression stage its pressure rises significantly. In some engines, the pressure of the air can rise by a factor of 30. The high -pressure air produced by the compressor is shown in dark blue.
The compressor usually sits at the front of the engine. There are two main types of compressor, the centrifugal compressor and the axial compressor. The compressor will draw in air and compress it before it is fed into the combustion chamber. In both types, the compressor rotates and it is driven by a shaft that passes through the middle of the engine and is attached to the turbine.
The combustor is where fuel is added to the compressed air and burnt to produce high velocity exhaust gas. Down the middle of the combustor runs the flame tube. The flame tube has a series of holes in it to allow in the compressed air. It is inside the flame tube that fuel is injected and burnt. There will be one or more igniters that project into the flame tube to start the mixture burning. Air and fuel are continually being added into the combustor once the engine is running. Combustion will continue without the use of the igniters once the engine has been started.
The combustor and flame tube must be very carefully designed to allow combustion to take place efficiently and reliably. This is especially difficult given the large amount of fast moving air being supplied by the compressor. The holes in the flame tube must be carefully sized and positioned. Smaller holes around where the fuel is added provide the correct mixture to burn. This is called the primary zone. Holes further down the flame tube allow in extra air to complete the combustion. This is the secondary zone. A final set of hole just before the entry to the turbine allow the remainder of the air to mix with the hot gases to cool them before they hit the turbine. This final zone is known as the dilution zone. The exhaust gas is fed from the end of the flame tube into the turbine.
Combustion Area
This high-pressure air then enters the combustion area, where a ring of fuel injectors inject a steady stream of fuel. The fuel is generally kerosene, jet fuel, propane or natural gas. If you think about how easy it is to blow a candle out, then you can see the design problem in the combustion area -- entering this area is high-pressure air moving at hundreds of miles per hour. You want to keep a flame burning continuously in that environment. The piece that solves this problem is called a "flame holder," or sometimes a "can." The can is a hollow, perforated piece of heavy metal. Half of the can in cross-section is shown below: The injectors are at the right. Compressed air enters through the perforations. Exhaust gases exit at the left. You can see in the previous figure that a second set of cylinders wraps around the inside and the outside of this perforated can, guiding the compressed intake air into the perforations.
The turbine extracts energy from the exhaust gas. The turbine can, like the compressor, be centrifugal or axial. In each type, the fast moving exhaust gas is used to spin the turbine. Since the turbine is attached to the same shaft as the compressor at the front of the engine the turbine and compressor will turn together. The turbine may extract just enough energy to turn the compressor. The rest of the exhaust gas is left to exit the rear of the engine to provide thrust as in a pure jet engine. Or extra turbine stages may be used to turn other shafts to power other machinery such as the rotors of a helicopter, the propellers of a ship or electrical generators in power stations the end of the flame tube into the turbine.
Cold air is drawn in from the left into the compressor (blue). The compressed air (light blue) then goes into the combustor. From the outside of the combustor the air goes through holes (purple) into the flame tube (yellow). Fuel is injected (green) into the flame tube and ignited. The igniters are not shown here. The hot exhaust gas flows from the end of the flame tube past the turbine (red) rotating it as it passes. From there the exhaust exits the engine. The turbine is connected via a shaft (black) to the compressor. Hence as the turbine rotates the compressor rotates with it drawing in more air to continue the cycle.
Energy is released when air is mixed with fuel and ignited in the combustor. The resulting gases are directed over the turbine’s blades, spinning the turbine and, cyclically, powering the compressor. Finally, the gases are passed through a nozzle, generating additional thrust by accelerating the hot exhaust gases by expansion back to atmospheric pressure.
Energy is extracted in the form of shaft power, compressed air and thrust, in any combination, and used to power aircraft, trains, ships, electrical generators, and even tanks.
3.1.1 Theory of operation
Gas turbines are described thermodynamically by the BraytonHYPERLINK “http://en.wikipedia.org/wiki/Brayton_cycle” cycle, in which air is compressed isentropically, combustion occurs at constant pressure, and expansion over the turbine occurs isentropically back to the starting pressure.
In practice, friction and turbulence cause:
a) Non-isentropic compression – for a given overall pressure ratio, the compressor delivery temperature is higher than ideal.
b) Non-isentropic expansion – although the turbine temperature drop necessary to drive the compressor is unaffected, the associated pressure ratio is greater, which decreases the expansion available to provide useful work.
c) Pressure losses in the air intake, combustor and exhaust – reduces the expansion available to provide useful work.
This is a general explanation of Gas turbines. We will see the operations and many more properties in the next edition.
As with all cyclic heat engines, higher combustion temperature means greater efficiency. The limiting factor is the ability of the steel, nickel, ceramic, or other materials that make up the engine to withstand heat and pressure. Considerable engineering goes into keeping the turbine parts cool. Most turbines also try to recover exhaust heat, which otherwise is wasted energy. Recuperators are heat exchangers that pass exhaust heat to the compressed air, prior to combustion. Combined cycle designs pass waste heat to steam turbine systems and combined heat and power (co-generation) uses waste heat for hot water production.
Since neither the compression nor the expansion can be truly isentropic, losses through the compressor and the expander represent sources of inescapable working inefficiencies. In general, increasing the compression ratio is the most direct way to increase the overall power output of a Brayton system.
History of Gas Turbines:
A turbine is any kind of spinning device that uses the action of a fluid to produce work. Typical fluids are: air, wind, water, steam and helium. Windmills and hydroelectric dams have used turbine action for decades to turn the core of an electrical generator to produce power for both industrial and residential consumption. Simpler turbines are much older, with the first known appearance dating to the time of ancient Greece.
In the history of energy conversion, however, the gas turbine is relatively new. The first practical gas turbine used to generate electricity ran at Neuchatel, Switzerland in 1939, and was developed by the Brown Boveri Company. The first gas turbine powered airplane flight also took place in 1939 in Germany, using the gas turbine developed by Hans P. von Ohain. In England, the 1930s’ invention and development of the aircraft gas turbine by Frank Whittle resulted in a similar British flight in 1941.
The name "gas turbine" is somewhat misleading, because to many it implies a turbine engine that uses gas as its fuel. Actually a gas turbine (as shown schematically in Fig. 1) has a compressor to draw in and compress gas (most usually air); a combustor (or burner) to add fuel to heat the compressed air; and a turbine to extract power from the hot air flow. The gas turbine is an internal combustion (IC) engine employing a continuous combustion process. This differs from the intermittent combustion occurring in Diesel and automotive IC engines. Because the 1939 origin of the gas turbine lies simultaneously in the electric power field and in aviation, there have been a profusion of "other names" for the gas turbine. For electrical power generation and marine applications it is generally called a gas turbine, also a combustion turbine (CT), a turboshaft engine, and sometimes a gas turbine engine.
For aviation applications it is usually called a jet engine, and various other names depending on the particular engine configuration or application, such as: jet turbine engine; turbojet; turbofan; fanjet; and turboprop or prop jet (if it is used to drive a propeller). The compressor combustor- turbine part of the gas turbine (Fig. 1) is commonly termed the gas generator.
Gas Turbine
A gas turbine is an engine where fuel is continuously burnt with compressed air to produce a stream of hot, fast moving gas. This gas stream is used to power the compressor that supplies the air to the engine as well as providing excess energy that may be used to do other work. The engine consists of three main parts viz., compressor, combustor and turbine.
There are many different kinds of turbines:
Steam turbine: Most power plants use coal, natural as, oil or a nuclear reactor to create steam. The steam runs through a huge and very carefully designed multi-stage turbine to spin an output shaft that drives the plant's generator. Hydroelectric dams use water turbines in the same way to generate power. The turbines used in a hydroelectric plant look completely different from a steam turbine because water is so much denser (and slower moving) than steam, but it is the same principle.
Wind turbines: They are also known as wind mills and use the wind as their motive force. A wind turbine looks nothing like a steam turbine or a water turbine because wind is slow moving and very light, but again, the principle is the same. A gas turbine is an extension of the same concept. In a gas turbine, a pressurized gas spins the turbine. In all modern gas turbine engines, the engine produces its own pressurized gas, and it does this by burning something like propane, natural gas, kerosene or jet fuel. The heat that comes from burning the fuel expands air, and the high-speed rush of this hot air spins the turbine.
Gas turbine engines are, theoretically, extremely
simple. They have three parts:
Compressor - Compresses the incoming air to high pressure
Combustion area - Burns the fuel and produces
high-pressure, high -velocity gas
Turbine - Extracts the energy from the high-pressure, high -velocity gas flowing from the combustion chamber.
A greater understanding of the gas turbine and its operation can be gained by considering its three major components (Fig. 1, Fig. 2 and Fig. 3): the compressor, the combustor and the turbine. The features and characteristics will be touched on here only briefly.
Compressors and Turbines: The compressor components are connected to the turbine by a shaft in order to allow the turbine to turn the compressor. A single shaft gas turbine (Fig. 1a and 1b) has only one shaft connecting the compressor and turbine components. A twin spool gas turbine (Fig. 6b, and 6c) has two concentric shafts, a longer one connecting a low pressure compressor to a low pressure turbine (the low spool) which rotates inside a shorter, larger diameter shaft. The shorter, larger diameter shaft connects the high pressure turbine with the higher pressure compressor (the high spool) which rotates at higher speeds than the low spool. A triple spool engine would have a third, intermediate pressure compressor-turbine spool.
Gas turbine compressors are either centrifugal or axial, or can be a combination of both. Centrifugal compressors (with compressed air output around the outer perimeter of the machine) are robust, generally cost less and are limited to pressure ratios of 6 or 7 to 1. They are found in early gas turbines or in modern, smaller gas turbines. The more efficient, higher capacity axial flow compressors (with compressed air output directed along the center line of the machine) are used in most gas turbines (e.g. Fig. 2 and Fig. 3). An axial compressor is made up of a relatively large number of stages, each stage, consisting of a row of rotating blades (airfoils) and a row of stationary blades (stators), arranged so that the air is compressed as it passes through each stage.
Turbines are generally easier to design and operate than compressors, since the hot air flow is expanding rather than being compressed. Axial flow turbines (e.g. Fig. 2 and Fig. 3) will require fewer stages than an axial compressor. There are some smaller gas turbines that utilize centrifugal turbines (radial inflow), but most utilize axial turbines.
Turbine design and manufacture is complicated by the need to extend turbine component life in the hot air flow. The problem of ensuring durability is especially critical in the first turbine stage where temperatures are highest. Special materials and elaborate cooling schemes must be used to allow turbine airfoils that melt at 1800-1900°F to survive in air flows with temperatures as high as 3000°F.
Combustors: A successful combustor design must satisfy many requirements and has been a challenge from the earliest gas turbines of Whittle and von Ohain. The relative importance of each requirement varies with the application of the gas turbine, and of course, some requirements are conflicting, requiring design compromises to be made. Most design requirements reflect concerns over engine costs, efficiency, and the environment. The basic design requirements can be classified as follows:
1. High combustion efficiency at all operating conditions
2. Low levels of unburned hydrocarbons and carbon monoxide, low oxides of nitrogen at high power and no visible smoke. (Minimized pollutants and emissions.)
3. Low pressure drop. Three to four percent is common.
4. Combustion must be stable under all operating conditions.
5. Consistently reliable ignition must be attained at very low temperatures, and at high altitudes (for aircraft).
6. Smooth combustion, with no pulsations or rough burning.
7. A low temperature variation for good turbine life requirements.
8. Useful life (thousands of hours), particularly for industrial use.
9. Multi-fuel use. Characteristically natural gas and diesel fuel are used for industrial applications and kerosene for aircraft.
10. Length and diameter compatible with engine envelope (outside dimensions).
11. Designed for minimum cost, repair and maintenance.
12. Minimum weight (for aircraft applications).
A combustor consists of at least three basic parts: a casing, a flame tube and a fuel injection system. The casing must withstand the cycle pressures and may be a part of the structure of the gas turbine. It encloses a relatively thin-walled flame tube within which combustion takes place, and a fuel injection system.
Compared to other prime movers (such as Diesel and reciprocating automobile engines), gas turbines are considered to produce very low levels of combustion pollution. The gas turbine emissions of major concern are unburned hydrocarbons, carbon monoxide, oxides of nitrogen (NOx) and smoke. While the contribution of jet aircraft to atmospheric pollution is less than 1%, jet aircraft emissions injected directly into the upper troposphere have doubled between the latitudes of 40 to 60 degrees north, increasing ozone by about 20%. In the stratosphere, where supersonic aircraft fly, NOx will deplete ozone. Both effects are harmful, so further NOx reduction in gas turbine operation is a challenge for the 21st century.
The Turbine
At the left of the engine is the turbine section. In this figure, there are two sets of turbines. The first set directly drives the compressor. The turbines, the shaft and the compressor all turn as a single unit: At the far left is a final turbine stage, shown here with a single set of vanes. It drives the output shaft. This final turbine stage and the output shaft are a completely stand-alone, freewheeling unit. They spin freely without any connection to the rest of the engine. And that is the amazing part about a gas turbine engine -- there is enough energy in the hot gases blowing through the blades of that final output turbine to generate 1,500 horsepower and drive a 63-ton M-1 Tank! A gas turbine engine really is that simple. In the case of the turbine used in a tank or a power plant, there really is nothing to do with the exhaust gases but vent them through an exhaust pipe, as shown. Sometimes the exhaust will run through some sort of heat exchanger either to extract the heat for some other purpose or to preheat air before it enters the combustion chamber.
The discussion here is obviously simplified a bit. For example, we have not discussed the areas of bearings, oiling systems, internal support structures of the engine, stator vanes and so on. All of these areas become major engineering problems because of the tremendous temperatures, pressures and spin rates inside the engine. The following figure shows the general layout of an axial-flow gas turbine -- the sort of engine you would find driving the rotor of a helicopter, for example:
In this engine, air is sucked in from the right by the compressor. The compressor is basically a cone-shaped cylinder with small fan blades attached in rows (eight rows of blades are represented here). Assuming the light blue represents air at normal air pressure, then as the air is forced through the compression stage its pressure rises significantly. In some engines, the pressure of the air can rise by a factor of 30. The high -pressure air produced by the compressor is shown in dark blue.
The compressor usually sits at the front of the engine. There are two main types of compressor, the centrifugal compressor and the axial compressor. The compressor will draw in air and compress it before it is fed into the combustion chamber. In both types, the compressor rotates and it is driven by a shaft that passes through the middle of the engine and is attached to the turbine.
The combustor is where fuel is added to the compressed air and burnt to produce high velocity exhaust gas. Down the middle of the combustor runs the flame tube. The flame tube has a series of holes in it to allow in the compressed air. It is inside the flame tube that fuel is injected and burnt. There will be one or more igniters that project into the flame tube to start the mixture burning. Air and fuel are continually being added into the combustor once the engine is running. Combustion will continue without the use of the igniters once the engine has been started.
The combustor and flame tube must be very carefully designed to allow combustion to take place efficiently and reliably. This is especially difficult given the large amount of fast moving air being supplied by the compressor. The holes in the flame tube must be carefully sized and positioned. Smaller holes around where the fuel is added provide the correct mixture to burn. This is called the primary zone. Holes further down the flame tube allow in extra air to complete the combustion. This is the secondary zone. A final set of hole just before the entry to the turbine allow the remainder of the air to mix with the hot gases to cool them before they hit the turbine. This final zone is known as the dilution zone. The exhaust gas is fed from the end of the flame tube into the turbine.
Combustion Area
This high-pressure air then enters the combustion area, where a ring of fuel injectors inject a steady stream of fuel. The fuel is generally kerosene, jet fuel, propane or natural gas. If you think about how easy it is to blow a candle out, then you can see the design problem in the combustion area -- entering this area is high-pressure air moving at hundreds of miles per hour. You want to keep a flame burning continuously in that environment. The piece that solves this problem is called a "flame holder," or sometimes a "can." The can is a hollow, perforated piece of heavy metal. Half of the can in cross-section is shown below: The injectors are at the right. Compressed air enters through the perforations. Exhaust gases exit at the left. You can see in the previous figure that a second set of cylinders wraps around the inside and the outside of this perforated can, guiding the compressed intake air into the perforations.
The turbine extracts energy from the exhaust gas. The turbine can, like the compressor, be centrifugal or axial. In each type, the fast moving exhaust gas is used to spin the turbine. Since the turbine is attached to the same shaft as the compressor at the front of the engine the turbine and compressor will turn together. The turbine may extract just enough energy to turn the compressor. The rest of the exhaust gas is left to exit the rear of the engine to provide thrust as in a pure jet engine. Or extra turbine stages may be used to turn other shafts to power other machinery such as the rotors of a helicopter, the propellers of a ship or electrical generators in power stations the end of the flame tube into the turbine.
Cold air is drawn in from the left into the compressor (blue). The compressed air (light blue) then goes into the combustor. From the outside of the combustor the air goes through holes (purple) into the flame tube (yellow). Fuel is injected (green) into the flame tube and ignited. The igniters are not shown here. The hot exhaust gas flows from the end of the flame tube past the turbine (red) rotating it as it passes. From there the exhaust exits the engine. The turbine is connected via a shaft (black) to the compressor. Hence as the turbine rotates the compressor rotates with it drawing in more air to continue the cycle.
Energy is released when air is mixed with fuel and ignited in the combustor. The resulting gases are directed over the turbine’s blades, spinning the turbine and, cyclically, powering the compressor. Finally, the gases are passed through a nozzle, generating additional thrust by accelerating the hot exhaust gases by expansion back to atmospheric pressure.
Energy is extracted in the form of shaft power, compressed air and thrust, in any combination, and used to power aircraft, trains, ships, electrical generators, and even tanks.
3.1.1 Theory of operation
Gas turbines are described thermodynamically by the BraytonHYPERLINK “http://en.wikipedia.org/wiki/Brayton_cycle” cycle, in which air is compressed isentropically, combustion occurs at constant pressure, and expansion over the turbine occurs isentropically back to the starting pressure.
In practice, friction and turbulence cause:
a) Non-isentropic compression – for a given overall pressure ratio, the compressor delivery temperature is higher than ideal.
b) Non-isentropic expansion – although the turbine temperature drop necessary to drive the compressor is unaffected, the associated pressure ratio is greater, which decreases the expansion available to provide useful work.
c) Pressure losses in the air intake, combustor and exhaust – reduces the expansion available to provide useful work.
This is a general explanation of Gas turbines. We will see the operations and many more properties in the next edition.
As with all cyclic heat engines, higher combustion temperature means greater efficiency. The limiting factor is the ability of the steel, nickel, ceramic, or other materials that make up the engine to withstand heat and pressure. Considerable engineering goes into keeping the turbine parts cool. Most turbines also try to recover exhaust heat, which otherwise is wasted energy. Recuperators are heat exchangers that pass exhaust heat to the compressed air, prior to combustion. Combined cycle designs pass waste heat to steam turbine systems and combined heat and power (co-generation) uses waste heat for hot water production.
Since neither the compression nor the expansion can be truly isentropic, losses through the compressor and the expander represent sources of inescapable working inefficiencies. In general, increasing the compression ratio is the most direct way to increase the overall power output of a Brayton system.
No comments:
Post a Comment